16 research outputs found

    ECG Signal Compression Using Discrete Wavelet Transform

    Get PDF

    An Efficient Technique for Compressing ECG Signals Using QRS Detection, Estimation, and 2D DWT Coefficients Thresholding

    Get PDF
    This paper presents an efficient electrocardiogram (ECG) signals compression technique based on QRS detection, estimation, and 2D DWT coefficients thresholding. Firstly, the original ECG signal is preprocessed by detecting QRS complex, then the difference between the preprocessed ECG signal and the estimated QRS-complex waveform is estimated. 2D approaches utilize the fact that ECG signals generally show redundancy between adjacent beats and between adjacent samples. The error signal is cut and aligned to form a 2-D matrix, then the 2-D matrix is wavelet transformed and the resulting wavelet coefficients are segmented into groups and thresholded. There are two grouping techniques proposed to segment the DWT coefficients. The threshold level of each group of coefficients is calculated based on entropy of coefficients. The resulted thresholded DWT coefficients are coded using the coding technique given in the work by (Abo-Zahhad and Rajoub, 2002). The compression algorithm is tested for 24 different records selected from the MIT-BIH Arrhythmia Database (MIT-BIH Arrhythmia Database). The experimental results show that the proposed method achieves high compression ratio with relatively low distortion and low computational complexity in comparison with other methods

    A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    No full text
    Introducing mobility to Wireless Sensor Networks (WSNs) puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs). Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions

    A Two-Stage Matching Game and Repeated Auctions for Users Admission and Channels Allocation in 5G HetNets

    No full text
    The fifth-generation (5G) wireless cellular networks aim to increase the users’ capacities and quality of experience as well as to integrate different wireless bands and modes of access. The introduction of cognitive radio technology and heterogeneous networks (HetNets) as part of the architecture of the 5G aims to efficiently reuse the available spectrum. This paper presents a two-stage framework based on matching theory and auction games with the objective of efficiently admitting secondary users to the wireless scene. In the first stage, a fast convergence matching game for the users admission problem in 5G HetNets is considered, where secondary users are associated to appropriate secondary base stations. These base stations access the available primary spectrum on behalf of its associated users in the next stage, namely a repeated modified English auction. Results show the existence of a stable matching point for the users admission game and a Walrasian equilibrium point for the repeated auctions. In addition, extensive simulations are performed to compare the proposed repeated auction against the single auction and the matching theory. It is proven that the repeated auction game outperforms the single auction game and matching game in terms of the occupancy of primary channels and the satisfaction of the secondary users
    corecore